Citizenship: United States of America

10100 Burnet Rd., Bldg. 160, Austin, TX 78758 ● Scott.D.Sifferman@utexas.edu ● http://www.sifferman.org

EDUCATION

THE UNIVERSITY OF TEXAS AT AUSTIN, Austin, TX

Doctor of Philosophy, Electrical Engineering, August 2020

GPA: 3.93 / 4.0

Dissertation: Mid-Infrared Type-I Laser Design using Molecular Beam Epitaxy

STANFORD UNIVERSITY, Stanford, CA

Master of Science, Electrical Engineering, June 2006

GPA: 3.61 / 4.0

ARIZONA STATE UNIVERSITY, BARRETT HONORS COLLEGE, Tempe, AZ

Bachelor of Science in Engineering, Electrical Engineering; Minor, Mathematics, May 2004

GPA: 3.93 / 4.0, summa cum laude

Honors Thesis: An Active Antenna for a General Coverage Receiver and the Use of Negative Impedance Converters to Improve Frequency Bandwidth

EXPERIENCE

THE UNIVERSITY OF TEXAS AT AUSTIN, MICROELECTRONICS RESEARCH CENTER (MRC), Austin, TX

Postdoctoral Fellow, Laboratory for Advanced Semiconductor Epitaxy (LASE)

September 2020 - Present

- Research focus: developing the world's first type-I diode laser operating at wavelengths beyond 4 μm.
- ♦ Additional responsibilities:
 - Upgrading an optical spectrometer data acquisition system.
 - Mentorship and technical guidance of doctoral students in experimental methods.

Graduate Research Assistant, LASE

August 2012 - August 2020

- Major research accomplishments:
 - Longest wavelength (3.62 μm) type-I diode laser with an Al-free active region.
 - Demonstrations of photoluminescence from type-I semiconductor materials with peak wavelengths up to 4.2 μm.
 - First epitaxial growth of GalnAsSbBi alloys, incorporating up to 3% Bi.
 - First demonstration of room-temperature photoluminescence from GalnAsSbBi alloys.
 - Demonstrations of high-quality, droplet-free GalnAsSbBi alloys on GaSb.
 - Designed novel heterostructures for thermionic emission-based optical absorbing materials.
- ◆ Contributions to laboratory and facilities development:
 - Operated and maintained two Gen. II molecular beam epitaxy (MBE) systems with associated laboratory equipment and electronics (bake-out station, vacuum pumps, residual gas analyzers, power supplies, PID controllers, etc.).
 - Developed an ultra-high vacuum-compatible heated scraper for indium buildup exfoliation.
 - Designed a shutter/bellows assembly method to prevent in-vacuum MBE shutter detachment.
 - Designed and implemented a support assembly for in-glovebag repair and maintenance of MBE substrate manipulators.
 - Designed and built a pump-probe optical transmission test bench with sub-picosecond resolution to measure carrier recombination lifetimes in semiconductors.
 - Increased the test automation capability of the MRC Hall test bench.
 - Repurposed an underused lab for a Fourier transform infrared spectroscopy (FTIR) and infrared microscope test station.
- Software tools and development:
 - Self-consistent data analysis and fitting tool using Python that analyzes X-ray diffraction measurements of epitaxially-grown semiconductor crystals to determine the semiconductor alloys.
 - Data analysis scripts to calculate and present performance metrics of laser devices and materials such as optical output and operating efficiency.
 - Maintained and upgraded a web-based SQL database to record laboratory activity and track consumable supplies.
- ◆ Mentorship and professional development:
 - Directed the work of eight individuals participating in NSF summer and semester research experiences.

MSS, INC., Nashville, TN

Research and Development Engineer

January 2010 - August 2012

- ♦ Research and development:
 - Designed, prototyped, and tested industrial-scale optical sensing equipment and object detection systems for automated recyclables sorting.
 - Performed testing and troubleshooting of optical sensing systems used in materials identification and separation.
 - Researched methods of glass identification and separation using ultraviolet fluorescence measurements.
- Product development and support:
 - Interfaced with mechanical, electrical, and software engineers to design sorting systems for materials recovery facilities.
 - Created quality control checklists for electronics production.
 - Provided operations support for new and legacy equipment deployed in the field.
- ◆ Engineering design:
 - Designed and tested CPLD-based data processing and handling sub-systems using Quartus FPGA Design.
 - Created electrical schematics and PCB layouts using Altium Designer.
 - Created and trained materials identification libraries from sampled data sets for a variety of input materials streams.
 - Calibrated detection/decision thresholds for application-specific optimization of materials identification and sorting.

GENERAL DYNAMICS ADVANCED INFORMATION SYSTEMS, Scottsdale, AZ

Senior Engineer – Systems

Optical characterization and measurement:

- January 2007 January 2010
- Supervised the General Dynamics Advanced Information Systems Photonics Laboratory and technical staff.
- Measured transmission degradation in diffractive optics and polymer waveguides exposed to simulated space radiation.
- Collaborated with external groups to perform radiation dose exposure tests on optical elements designed for spacebased applications.
- Systems integration and development:
 - Collaborated with external teams to integrate photonics elements into a proposed space-based high-speed optical communications system.
 - Designed and executed regression testing of a GPS RF receiver module in development, and reported the results.
- Optical signal processing:
 - Created a LabVIEW GUI to control a high-speed optical data communications switch and signal processing test bed, reporting on operating metric such as link uptime, transmitted/received data, data rate, and bit error rates.
 - Simulated optical signal processing linearization techniques using oversampling methods.
- ◆ Member of the New Employee Engagement Committee.

Systems Engineer II (with General Dynamics C4 Systems)

November 2006 - January 2007

- ◆ Facilities development:
 - Supervised the General Dynamics C4 Systems Photonics Laboratory.
 - Managed a capital expenditures budget of \$7,000 per month to acquire equipment and expand lab testing capability.
- Systems integration:
 - Calculated link budgets and size, weight, and power (SWaP) for satellite-based optical communication systems.
 - Performed investigations of emerging photonics technology for high-speed optical communications.

STANFORD UNIVERSITY, Stanford, CA

Research Assistant, Center for Nonlinear Optical Materials

April 2005 – October 2006

- Primary research efforts:
 - Performed experimental investigations on the operation of synchronously-pumped optical parametric oscillators.
 - Developed mathematical models and simulations of synchronously-pumped optical parametric oscillator characteristics using MATLAB.
- Other responsibilities:
 - Supervised the safe operation of a high-powered optical test bench for a photoacoustic imaging experiment.

GENERAL DYNAMICS C4 SYSTEMS, Gilbert, AZ

Electrical Engineering Intern (also with Spectrum Astro, Inc.)

April 2003 - September 2004

- Engineering design and testing:
 - Maintained a LabVIEW test bench and wrote data analysis software using Perl and MATLAB for a space fuel cell research project.
 - Designed the Thermal Interface Board for the Fermi Gamma-ray Space Telescope using Mentor Graphics Design Architect.
- ◆ Engineering support:
 - Procured parts for satellite manufacturing based on engineer specifications.
 - Assisted the Lead Engineer for Command and Data Handling on the NFIRE satellite.

PROFESSIONAL AND TECHNICAL SKILLS

Laboratory experience: Optics and optoelectronics test and measure; molecular beam epitaxy; ultra-high vacuum equipment operation and maintenance (effusion cells, cryopumps, residual gas analyzers, etc.); electronic test bench (oscilloscope, function generator, power supplies, RF vector network analyzer, etc.); soldering and circuit assembly; nanofabrication and clean room techniques (photolithography, chemical vapor deposition, reactive ion etching, inductively-coupled plasma etching, electron beam metal evaporation, wire bonding, wet-bench, etc.); testing and analysis (photoluminescence, electroluminescence, X-ray diffractometry (XRD), reciprocal space mapping (RSM), transmission/reflection spectroscopy, Hall effect measurements, Fourier transform infrared (FTIR) spectroscopy, ellipsometry, optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM))

Technical software: MATLAB, Origin, NI LabVIEW, nextnano, Altium Designer, Quartus FPGA Design, Mathematica, Advanced Design System (ADS), Mentor Graphics Design Manager and Design Architect, MathCad, Visual C++

Programming languages: Perl, Python, C/C++, Altera HDL, VHDL, XML, HTML, PHP, SQL, CSS, JavaScript, SPICE Other software: LaTeX, Microsoft Office Suite, Adobe Photoshop and Illustrator

AWARDS AND DISTINCTIONS

- ◆ Dr. Brooks Carlton Fowler Endowed Presidential Graduate Fellowship in Electrical and Computer Engineering, The University of Texas at Austin, awarded 2017–2020.
- Cockrell School of Engineering Doctoral Fellowship, The University of Texas at Austin, awarded 2012–2016.
- ◆ Licensed Amateur Radio Operator, Extra Class, awarded 2008.
- ♦ Engineering Dean's List, Arizona State University, awarded 2000–2004.
- ◆ Arizona State University Merit Scholarship, awarded 2000–2004.
- ◆ National Merit Finalist, awarded 2000.
- Eagle Scout, awarded 1999.